On the edge cover polynomial of a graph

نویسندگان

  • Saieed Akbari
  • Mohammad Reza Oboudi
چکیده

Let G be a simple graph of order n and size m. An edge covering of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. Here we introduce a new graph polynomial. The edge cover polynomial of G is the polynomial E(G, x) = ∑m i=1 e(G, i)x , where e(G, i) is the number of edge covering sets of G of size i. Let G and H be two graphs of order n such that δ(G) ≥ n 2 , where δ(G) is the minimum degree of G. If E(G, x) = E(H, x), then we show that the degree sequence of G and H are the same. We show that cycles and complete bipartite graphs are determined by their edge cover polynomials. Also we determine all graphs G for which E(G, x) = E(Pn, x), where Pn is the path of order n. We show that if δ(G) ≥ 3, then E(G, x) has at least one non-real root. We prove that the real roots of edge cover polynomial of trees are dense in the interval [−4,0]. Finally, we characterize all graphs whose edge cover polynomials have exactly one or two distinct roots. In fact their roots are contained in {−3,−2,−1, 0}. 2010 AMS Subject Classification: 05C31; 05C70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

Flow Polynomial of some Dendrimers

Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

The Laplacian Polynomial and Kirchhoff Index of the k-th‎ Semi Total Point Graphs

The k-th semi total point graph of a graph G, , ‎is a graph‎ obtained from G by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎In this paper‎, a formula for Laplacian polynomial of in terms of‎ characteristic and Laplacian polynomials of G is computed‎, ‎where is a connected regular graph‎.The Kirchhoff index of is also computed‎.

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013