On the edge cover polynomial of a graph
نویسندگان
چکیده
Let G be a simple graph of order n and size m. An edge covering of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. Here we introduce a new graph polynomial. The edge cover polynomial of G is the polynomial E(G, x) = ∑m i=1 e(G, i)x , where e(G, i) is the number of edge covering sets of G of size i. Let G and H be two graphs of order n such that δ(G) ≥ n 2 , where δ(G) is the minimum degree of G. If E(G, x) = E(H, x), then we show that the degree sequence of G and H are the same. We show that cycles and complete bipartite graphs are determined by their edge cover polynomials. Also we determine all graphs G for which E(G, x) = E(Pn, x), where Pn is the path of order n. We show that if δ(G) ≥ 3, then E(G, x) has at least one non-real root. We prove that the real roots of edge cover polynomial of trees are dense in the interval [−4,0]. Finally, we characterize all graphs whose edge cover polynomials have exactly one or two distinct roots. In fact their roots are contained in {−3,−2,−1, 0}. 2010 AMS Subject Classification: 05C31; 05C70.
منابع مشابه
ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملFlow Polynomial of some Dendrimers
Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملThe Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 34 شماره
صفحات -
تاریخ انتشار 2013